Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The melanocortin receptor (MCR) family consists of five G-protein-coupled receptors (MC1R-MC5R) with diverse physiological roles. MC1R controls pigmentation, MC2R is a critical component of the hypothalamic-pituitary-adrenal axis, MC3R and MC4R have a vital role in energy homeostasis and MC5R is involved in exocrine function. The melanocortin receptor accessory protein (MRAP) and its paralogue MRAP2 are small single-pass transmembrane proteins that have been shown to regulate MCR expression and function. In the adrenal gland, MRAP is an essential accessory factor for the functional expression of the MC2R/ACTH receptor. The importance of MRAP in adrenal gland physiology is demonstrated by the clinical condition familial glucocorticoid deficiency, where inactivating MRAP mutations account for ∼20% of cases. MRAP is highly expressed in both the zona fasciculata and the undifferentiated zone. Expression in the undifferentiated zone suggests that MRAP could also be important in adrenal cell differentiation and/or maintenance. In contrast, the role of adrenal MRAP2, which is highly expressed in the foetal gland, is unclear. The expression of MRAPs outside the adrenal gland is suggestive of a wider physiological purpose, beyond MC2R-mediated adrenal steroidogenesis. In vitro, MRAPs have been shown to reduce surface expression and signalling of all the other MCRs (MC1,3,4,5R). MRAP2 is predominantly expressed in the hypothalamus, a site that also expresses a high level of MC3R and MC4R. This raises the intriguing possibility of a CNS role for the MRAPs.

Citation

T V Novoselova, D Jackson, D C Campbell, A J L Clark, L F Chan. Melanocortin receptor accessory proteins in adrenal gland physiology and beyond. The Journal of endocrinology. 2013 Apr;217(1):R1-11

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 23418361

View Full Text