Correlation Engine 2.0
Clear Search sequence regions


Tuberous sclerosis complex (TSC) is an autosomal dominant disorder that results from mutations in the TSC1 or TSC2 genes and is associated with hamartoma formation in multiple organ systems. Brain disorders are the origin of more frequent and severe problems and include infantile spasms, intractable epilepsy, brain tumors, cognitive disabilities, and autism. TSC1 or TSC2 encoded proteins modulate cell function via the mTOR signaling cascade and serve as keystones in regulating cell growth and proliferation. AIM. To review the etiopathogenic mechanisms and the natural course of the association of autism and epilepsy in TSC. Both the clinical and the neuroimaging findings of TSC, including early onset epilepsy and the localization of cortical tubers in the temporal lobes, and the molecular understanding of the mTOR signaling pathway, not only involved in cell growth, but also in synaptogenesis, synaptic plasticity and neuronal functioning, have suggested a multimodal origin of autism in these patients. A greater understanding of the pathogenetic mechanisms underlying autism in TSC could help in devising targeted and potentially more effective treatment strategies. Antagonism of the mTOR pathway with rapamycin and everolimus may provide new therapeutic options for these TSC patients.

Citation

Juan José García-Peñas, Inmaculada Carreras-Sááez. Autism, epilepsy and tuberous sclerosis complex: a functional model linked to mTOR pathway]. Revista de neurologia. 2013 Feb 22;56 Suppl 1:S153-61


PMID: 23446718

View Full Text