Correlation Engine 2.0
Clear Search sequence regions


The molecular mechanisms of sodium taste transduction are not completely understood, especially those responsible for the portion of NaCl's taste in rodents that is not blocked by amiloride. As a prelude to conducting genetic analyses of peripheral NaCl taste responsiveness, we performed multiunit electrophysiological recordings from the chorda tympani (CT) nerve in C57BL/6J (B6) and A/J mice. Mice were anesthetized, the CT was accessed, and taste solutions were flowed over the tongue in order to measure the integrated whole-nerve response. NaCl was delivered before and during application of 100μM amiloride. Pre-amiloride responses were significantly larger in A/J than B6 mice for 1-8mM NaCl. Responses to NaCl were suppressed significantly by amiloride in both strains and to similar degrees. However, the size of the amiloride-insensitive NaCl response component was significantly larger in A/J mice than in B6 mice for NaCl at 2-16mM. These data help to explain the prior observation that the strains differ in behavioral taste thresholds for NaCl. Specifically, the results suggest that perception of sodium-specific taste by mice depends on the ratio of amiloride-sensitive and -insensitive responses in the CT, rather than on the absolute level of the whole-nerve response to NaCl or on the size of the amiloride-sensitive component alone. Because the B6 and A/J mice differed in the size of their amiloride-insensitive components, they may prove useful in future genetic work designed to characterize the underlying transduction mechanisms. Copyright © 2013 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

Citation

Chandra M Cherukuri, Alexander A Bachmanov, Stuart A McCaughey. A/J and C57BL/6J mice differ in chorda tympani responses to NaCl. Neuroscience research. 2013 Apr;75(4):283-8

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 23458904

View Full Text