Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Notch signaling pathway plays important roles in promoting the generation of marginal zone (MZ) B cells at the expense of follicular (FO) B cells during periphery B cell maturation, but the underlying molecular mechanisms are not well understood. We hypothesize that Notch favors the generation of MZ B cells by downregulating E protein activity. In this study, we demonstrated that expression of Id2 and ankyrin-repeat SOCS box-containing protein 2 was elevated in MZ B cells and by Notch signaling. Id2 inhibits the DNA binding activity of E proteins, whereas ankyrin-repeat SOCS box-containing protein 2 facilitates E protein ubiquitination. Next, we examined the phenotypes of splenic B cells in mice expressing constitutively active Notch1 and/or two gain-of-function mutants of E proteins that counteract Id2-mediated inhibition or Notch-induced degradation. We found that upregulation of E proteins promoted the formation of FO B cells, whereas it suppressed the maturation of MZ B cells. In contrast, excessive amounts of Notch1 stimulated the differentiation of MZ B cells and inhibited the production of FO B cells. More interestingly, the effects of Notch1 were reversed by gain of E protein function. Furthermore, high levels of Bcl-6 expression in FO B cells was shown to be diminished by Notch signaling and restored by E proteins. In addition, E proteins facilitated and Notch hindered the differentiation of transitional B cells. Taken together, it appears that Notch regulates peripheral B cell differentiation, at least in part, through opposing E protein function.

Citation

Ping Zhang, Ying Zhao, Xiao-Hong Sun. Notch-regulated periphery B cell differentiation involves suppression of E protein function. Journal of immunology (Baltimore, Md. : 1950). 2013 Jul 15;191(2):726-36

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 23752615

View Full Text