Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

RNA polymerase III (Pol III) occurs in two versions, one containing the POLR3G subunit and the other the closely related POLR3GL subunit. It is not clear whether these two Pol III forms have the same function, in particular whether they recognize the same target genes. We show that the POLR3G and POLR3GL genes arose from a DNA-based gene duplication, probably in a common ancestor of vertebrates. POLR3G- as well as POLR3GL-containing Pol III are present in cultured cell lines and in normal mouse liver, although the relative amounts of the two forms vary, with the POLR3G-containing Pol III relatively more abundant in dividing cells. Genome-wide chromatin immunoprecipitations followed by high-throughput sequencing (ChIP-seq) reveal that both forms of Pol III occupy the same target genes, in very constant proportions within one cell line, suggesting that the two forms of Pol III have a similar function with regard to specificity for target genes. In contrast, the POLR3G promoter--not the POLR3GL promoter--binds the transcription factor MYC, as do all other promoters of genes encoding Pol III subunits. Thus, the POLR3G/POLR3GL duplication did not lead to neo-functionalization of the gene product (at least with regard to target gene specificity) but rather to neo-functionalization of the transcription units, which acquired different mechanisms of regulation, thus likely affording greater regulation potential to the cell.


Marianne Renaud, Viviane Praz, Erwann Vieu, Laurence Florens, Michael P Washburn, Philippe l'Hôte, Nouria Hernandez. Gene duplication and neofunctionalization: POLR3G and POLR3GL. Genome research. 2014 Jan;24(1):37-51

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 24107381

View Full Text