Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Leucine-rich repeat kinase 2 (LRRK2) mutations are the most common cause of dominant and sporadic Parkinson's disease (PD), a common neurodegenerative disorder. Yeast-two-hybrid screening using human LRRK2 kinase domain as bait identified microtubule associated protein 1B (MAP1B) as a LRRK2 interactor. The interacting domains were LRRK2 kinase and the light chain portion of MAP1B (LC1). LRRK2 + LC1 interaction resulted in LRRK2 kinase inhibition. LRRK2 mutants (R1441C, G2019S and I2020T) exhibited decreased endogenous LC1 expression and its co-expression with LC1 rescued LRRK2 mutant-mediated toxicity. This study presented the first data on the effects of LRRK2 + LC1 interaction and also suggested that LCI possibly rescued LRRK2 mutant-induced cytotoxicity by inhibiting LRRK2 kinase activity. Compounds that upregulate LC1 expression may therefore hold therapeutic potential for LRRK2-linked diseases.

Citation

Sharon L Chan, Ling-Ling Chua, Dario C Angeles, Eng-King Tan. MAP1B rescues LRRK2 mutant-mediated cytotoxicity. Molecular brain. 2014 Apr 22;7:29

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 24754922

View Full Text