Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Due to lack of understanding of the complex nature of the composting process, there is a need to provide a valuable tool that can help to improve the prediction of the process performance but also its optimization. Therefore, the main objective of this study is to develop a comprehensive mathematical model of the composting process based on microbial kinetics. The model incorporates two different microbial populations that metabolize the organic matter in two different substrates. The model was validated by comparison of the model and experimental data obtained from the composting process of the mixture of poultry manure and wheat straw. Comparison of simulation results and experimental data for five dynamic state variables (organic matter conversion, oxygen concentration, carbon dioxide concentration, substrate temperature and moisture content) showed that the model has very good predictions of the process performance. According to simulation results, the optimum values for air flow rate and ambient air temperature are 0.43 l min(-1) kg(-1)OM and 28 °C, respectively. On the basis of sensitivity analysis, the maximum organic matter conversion is the most sensitive among the three objective functions. Among the twelve examined parameters, μmax,1 is the most influencing parameter and X1 is the least influencing parameter. Copyright © 2015 Elsevier Ltd. All rights reserved.

Citation

Ivan Petric, Nesib Mustafić. Dynamic modeling the composting process of the mixture of poultry manure and wheat straw. Journal of environmental management. 2015 Sep 15;161:392-401

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 26209761

View Full Text