Correlation Engine 2.0
Clear Search sequence regions

  • ACAT2 (9)
  • AKT (2)
  • breast cancer (12)
  • cells (10)
  • changes breast (1)
  • cholesteryl esters (1)
  • leptin (10)
  • leptin receptor (1)
  • Ob R (2)
  • obesity (3)
  • PI3K (2)
  • poor prognosis (1)
  • risk factor (1)
  • SREBP2 (2)
  • western blot (2)
  • women (2)
  • Sizes of these terms reflect their relevance to your search.

    Previously, it has been shown that obesity may be considered as a risk factor for breast cancer in postmenopausal women. Leptin, a hormone whose level is elevated in obesity, has been suggested to be involved in the development of breast cancer, and univariate survival analyses have shown that over-expression of ACAT2, an enzyme that is involved in the production of cholesteryl esters, may be associated with a poor prognosis. Here, we aimed to investigate the effect of leptin on the proliferation, migration and invasion of breast cancer cells, as well as to elucidate its underlying mode of action. Gene expression changes in leptin treated breast cancer-derived MCF-7, T47D and BT474 cells were assessed using PCR array, qRT-PCR and Western blot analyses. The expression patterns of Ob-R (leptin receptor) and ACAT2 in breast cancer cells and primary breast cancer tissue samples were analyzed using immunofluorescence and immunohistochemistry, respectively. Leptin-induced proliferation of breast cancer cells was assessed using a CCK8 assay, and scratch wound and Transwell assays were used to assess breast cancer cell invasion and migration. We found that, among the genes tested, ACAT2 expression exhibited the most significant changes in the leptin treated cells. In addition, we found that inhibition of ACAT2 expression using pyripyropene A (PPPA) or siRNA-mediated gene silencing significantly decreased leptin-induced proliferation, migration and invasion of MCF-7 and T47D cells. Subsequent Western blot analyses strongly indicated that the PI3K/AKT/SREBP2 signaling pathway was involved in leptin-induced ACAT2 upregulation in both MCF-7 and T47D cells. Finally, through the analysis of primary breast cancer tissue samples we found that ACAT2 may affect cancer progression through activation of the Ob-R. Our data indicate that leptin may enhance the proliferation, migration and invasion of breast cancer cells via ACAT2 up-regulation through the PI3K/AKT/SREBP2 signaling pathway. Therefore, the leptin/ACAT2 axis may represent an attractive therapeutic target for breast cancer, particularly in postmenopausal and/or obese women.


    Yunxiu Huang, Qianni Jin, Min Su, Feihu Ji, Nian Wang, Changli Zhong, Yulin Jiang, Yifeng Liu, Zhiqian Zhang, Junhong Yang, Lan Wei, Tingmei Chen, Bing Li. Leptin promotes the migration and invasion of breast cancer cells by upregulating ACAT2. Cellular oncology (Dordrecht). 2017 Dec;40(6):537-547

    PMID: 28770546

    View Full Text