Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Cervical cancer, resulting from infection with human papillomavirus (HPV)16, remains the fourth most common cancer in women worldwide. Recently, three prophylactic HPV vaccines targeting high-risk HPVs (particularly HPV16 and HPV18) have been implemented to protect younger women. However, individuals with pre-existing infections have no benefit from prophylactic vaccines. Thus, there is an urgent need to develop therapeutic vaccines. HPV16 E7 has been widely utilized as a target for immune therapy of HPV16-associated lesions or cancers, reflecting the sustained existence of this virus in cancerous cells. We developed mannosylated HPV16 E7 (mE7) expressed from Pichia pastoris as a therapeutic vaccine against HPV16-associated cancer. Unmannosylated E7 (E7) was also generated from Pichia pastoris as a control. Mannosylation enhanced the uptake of mE7 by mannose receptors of bone marrow-derived dendritic cells (BMDCs), while the uptake of E7 was unaffected. mE7-uptake BMDCs in vitro induced more IFN-γ secretion by splenocytes of immunized mice than E7. Vaccination of C57BL/6 mice with mE7 combined with adjuvant monophosphoryl lipid A (MPL) elicited stronger Th1 (type 1 T helper cell) responses and E7-specific T cell responses than E7. The mE7 vaccine induced the increased production of IFN-γ, IL-2 and TNF-α, elicited more E7-specific IFN-γ-secreting CD8+ T cells in spleen and peripheral blood mononuclear cells (PMBCs) and promoted stronger E7-specific cytotoxic CD8+ T cell responses compared with E7. Furthermore, TC-1 tumor challenged mice were used to confirm the antitumor activity of the vaccines. As a result, mE7 generated complete antitumor activity against TC-1 tumors, while E7 only provided partial antitumor activity. Taken together, mE7 can be a promising immunotherapy for treating cervical cancer.

Citation

Zonglin Wang, Cuihua Wei, Yanjun Zhang, Wei Wang, Zheng Zhou, Gengfu Xiao. Fungal mannosylation enhances human papillomavirus 16 E7 therapeutic immunity against TC-1 tumors. Oncology reports. 2018 Jan;39(1):425-432


PMID: 29115562

View Full Text