Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

How inflammatory cells are recruited into the central nervous system is a topic of interest in a number of neurological injuries. In aneurysmal subarachnoid hemorrhage (SAH), neutrophil accumulation in the central nervous system 3 days after the hemorrhage is a critical step in the development of delayed cerebral injury (DCI). The mechanism by which neutrophils enter the central nervous system is still unclear. To identify human effectors of neutrophil recruitment, cerebrospinal fluid (CSF) samples were taken from a small, selected sample of SAH patients with external ventricular drainage devices (10 patients). Among a battery of CSF cytokines tested 3 days after SAH, five cytokines were associated with poor 90-day outcome (modified Rankin Score 3-6). A parallel study in a mouse model of mild SAH showed elevation in three cytokines in the CNS compared to sham. IL-17 and IL-2 were increased in both patients and the mouse model. IL-17 was investigated further because of its known role in neutrophil recruitment. Inhibition of RAR-Related Orphan Receptor Gamma T, the master transcription factor of IL-17, with the inverse agonist GSK805 suppressed neutrophils entry into the CNS after SAH compared to control. Using an IL-17 reporter mouse, we investigated the source of IL-17 and found that myeloid cells were a common IL-17-producing cell type in the meninges after SAH, suggesting an autocrine role for neutrophil recruitment. Taken together, IL-17 appears to be in important factor in the recruitment of neutrophils into the meninges after SAH and could be an important target for therapies to ameliorate DCI.

Citation

A P Coulibaly, W T Gartman, V Swank, J A Gomes, L Ruozhuo, J DeBacker, J J Provencio. RAR-Related Orphan Receptor Gamma T (RoRγt)-Related Cytokines Play a Role in Neutrophil Infiltration of the Central Nervous System After Subarachnoid Hemorrhage. Neurocritical care. 2020 Aug;33(1):140-151

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 31768758

View Full Text