Correlation Engine 2.0
Clear Search sequence regions


Prepulse inhibition of the startle reflex (PPI) is disrupted in several psychiatric disorders including schizophrenia. Understanding PPI pharmacology may help elucidate the pathophysiology of these disorders and lead to better treatments. Given the advantages of multi-target approaches for complex mental illnesses treatment, we have investigated the interaction between receptors known to modulate PPI (5-HT1A and 5-HT2A) and the neuromodulatory endocannabinoid system. To investigate serotonin and cannabinoid receptor (CBR) co-modulation in a model of PPI disruption relevant to schizophrenia METHODS: Male Swiss mice were pretreated with WIN 55,212-2 (CBR agonist), rimonabant (CB1R inverse agonist), 8-OH-DPAT (5-HT1A/7 agonist), and volinanserin (5-HT2A antagonist) or with a combination of a cannabinoid and a serotonergic drug. PPI disruption was induced by acute administration of MK-801. WIN 55,212-2 and rimonabant did not change PPI nor block MK-801-induced deficits. 8-OH-DPAT increased PPI in control mice and, in a higher dose, inhibited MK-801-induced impairments. Volinanserin also increased PPI in control and MK-801-treated mice, presenting an inverted U-shaped dose-response curve. Co-administration of either cannabinoid ligand with 8-OH-DPAT did not change PPI; however, the combination of volinanserin with rimonabant increased PPI in both control and MK-801-exposed mice. WIN 55,212-2 and rimonabant had similar effects in PPI. Moreover, serotonin and cannabinoid receptors interact to modulate PPI. While co-modulation of CBR and 5-HT1A receptors did not change PPI, a beneficial effect of 5-HT2A and CB1R antagonist combination was detected, possibly mediated through potentiation of 5-HT2A blockade effects by concomitant CB1R blockade.

Citation

Adriana M Marques, Michele V Macena, Aline R Cardoso, Camila S O Hammes, Fernanda M L Pinheiro, Newton G Castro, Gilda A Neves. Effects of combined 5-HT2A and cannabinoid receptor modulation on a schizophrenia-related prepulse inhibition deficit in mice. Psychopharmacology. 2020 Jun;237(6):1643-1655

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32095916

View Full Text