Correlation Engine 2.0
Clear Search sequence regions


Escherichia coli O157:H7 and Shigella flexneri are the predominant diarrhoeal pathogens and those strains producing Shiga toxins cause life-threatening sequelae including hemolytic uremic syndrome (HUS) upon their entry into the host. Intimate adherence of E. coli O157 and invasion of S. flexneri in the host intestinal epithelial cells is mainly mediated by Intimin and IpaB proteins, respectively. In this study, we have synthesized chimera of immunodominant regions of Intimin (eae) and IpaB (ipaB) designated as EI and expressed it in Lactococcus lactis (LL-EI) to develop a combinatorial oral vaccine candidate. Immune parameters and protective efficacy of orally administered LL-EI were assessed in the murine model. Significant EI-specific serum IgG, IgA, and fecal IgA antibody titer were observed in the LL-EI group. Considerable increase in EI-specific splenocyte proliferation and a concurrent upregulation of both Th1 and Th2 cytokines was observed in LL-EI immunized mice. Flow cytometry analysis also revealed a significant increase in CD4 and CD8 cell counts in LL-EI immunized group compared to PBS, LL control group.In vitro studies using LL-EI immunized mice sera showed substantial protection against bacterial adhesion and invasion caused by E. coli O157 and Shigella flexneri¸ respectively. LL-EI immunized group challenged with E. coli O157 ceased fecal shedding within 6 days, and mice challenged with S. flexneri showed 93% survival with minimal bacterial load in the lungs. Our results indicate that LL-EI immunization elicits systemic, mucosal and cell-mediated immune responses, and can be a promising candidate for oral vaccine development against these pathogens. Copyright © 2020 Elsevier B.V. All rights reserved.

Citation

Sreerohini Sagi, Balakrishna Konduru, Manmohan Parida. Heterologous expression of Intimin and IpaB fusion protein in Lactococcus lactis and its mucosal delivery elicit protection against pathogenicity of Escherichia coli O157 and Shigella flexneri in a murine model. International immunopharmacology. 2020 Aug;85:106617

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32464569

View Full Text