Correlation Engine 2.0
Clear Search sequence regions


  • apoptosis (2)
  • disrupts liver (1)
  • endoderm (1)
  • gene (3)
  • Hnf4a (1)
  • liver (9)
  • nuclear export (1)
  • organogenesis (1)
  • rapamycin (1)
  • Rbm15 (7)
  • rna (3)
  • zebrafish (3)
  • Sizes of these terms reflect their relevance to your search.

    Liver organogenesis begins with hepatic precursors in the foregut endoderm, followed by hepatoblast specification, differentiation, outgrowth, and maturation for the formation of functional hepatocytes. Although several signaling pathways and critical factors that regulate liver specification, differentiation, and proliferation have been identified, little is known about how liver maturation is regulated. Here, we used a screen for mutations affecting liver development in zebrafish and identified a cq96 mutant that exhibits a specific defect in liver maturation. Results from positional cloning revealed that cq96 encodes an RNA-binding protein, Rbm15, which is an evolutionarily conserved Spen family protein and known to play a crucial role in RNA m6A modification, nuclear export, and alternative splicing. However, a function of Rbm15 in embryonic liver development has not been reported. We found that Rbm15 is specifically expressed in the liver after its differentiation. CRISPR/Cas9-mediated loss of rbm15 repressed hepatic maturation, but did not affect hepatoblast specification, differentiation, and hepatocyte proliferation and apoptosis. Additional experiments disclosed that the mTOR complex 1 (mTORC1) pathway is highly activated in rbm15-deficient hepatocytes. Moreover, rapamycin treatment partially restored normal hepatic gene expression as well as the nuclear location of the transcription factor Hnf4a. Taken together, these results reveal an unexpected role of Rbm15 in liver maturation. © 2020 Hu et al.

    Citation

    Liang Hu, Hongyan Li, Zhiping Chi, Jianbo He. Loss of the RNA-binding protein Rbm15 disrupts liver maturation in zebrafish. The Journal of biological chemistry. 2020 Aug 14;295(33):11466-11472

    Expand section icon Mesh Tags


    PMID: 32518161

    View Full Text