Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Bioregenerative Life Support System (BLSS) is a closed artificial ecosystem and could provide oxygen, food, water and other substrates for long-term deep space survival. The treatment and recycle of the solid waste are crucial and rate-limiting steps in BLSS, and it's reported that the solid waste such as the inedible plants and human feces could be fermented aerobically and then reused as fertilizer for growing plants in BLSS, which may be an effective way to improve the solid waste recycling rate. However, the recycling performance and the effect on the system need to be evaluated. In this study, the fermented and decomposed solid waste product from the 365d BLSS experiment with human involved in Lunar Palace 1 was utilized, and was added to the Hoagland nutrient solution as a supplementary fertilizer in the weight proportion of 5% and 10%, respectively, for the cultivation of wheat (Group-5% and Group-10%). Then, the effects on wheat germination, morphology, photosynthesis, biomass, the conductivity of the cultured substrates and microorganisms were detected and compared with those of the CK group cultured using only Hoagland nutrient solution. The results showed that this planting method had no inhibitory effect on the wheat germination, root length and yield, and might even promote the vegetative growth of wheat in terms of Vigor index, plant height, leaf area and net photosynthesis rate to some extent. The added solid waste fermentation substrate as well as the planting environment in Lunar Palace 1 both had significant influences on the rhizosphere microorganisms of wheat. The bacteria diversity was more abundant than fungi at phylum level, and the relative abundance varied along with the wheat growth period. The relative abundance of the cellulose degrading microorganisms including Actinobacteria and Ascomycota increased in Group-5% and Group-10% compared with CK group along with the growth of wheat. Moreover, the proper reuse of the fermentation substrate could reduce the use of inorganic salts by 9.8%-11.9% and save 40L•m - 2 of water for wheat cultivation. This research has considerable application significance in future deep space exploration. Copyright © 2020 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.


Dianlei Liu, Beizhen Xie, Hui Liu, Zhikai Yao, Hong Liu. Effect of solid waste fermentation substrate on wheat (Triticum aestivum L.) growth in closed artificial ecosystem. Life sciences in space research. 2020 Aug;26:163-172

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 32718682

View Full Text