Correlation Engine 2.0
Clear Search sequence regions


  • 5- fluorouracil (90)
  • 6 fluorouracil (1)
  • 8 oxo- dg (1)
  • adduct (4)
  • ammonium (1)
  • apoptosis (2)
  • appears (1)
  • base pair dna (1)
  • base pair mismatches (1)
  • base pairs (9)
  • breath test (1)
  • camptothecin (2)
  • cancer (25)
  • carbon (1)
  • catalysis (1)
  • CDHP (1)
  • cell cycle (2)
  • cells growth (1)
  • cellular (1)
  • CF10 (3)
  • concept (1)
  • cyanohydrin (1)
  • dna repair (2)
  • doxorubicin (1)
  • DPYD (13)
  • drugs treatment (1)
  • eniluracil (1)
  • essential (1)
  • EtBr (1)
  • ethidium bromide (1)
  • fdump (19)
  • food (1)
  • fox (1)
  • fps 2 (1)
  • futp (2)
  • halogens (1)
  • humans (3)
  • hydrogen (1)
  • hydrogen bond (3)
  • inhibits (6)
  • insights (2)
  • ion (3)
  • lab (2)
  • leucovorin (1)
  • leukemia (1)
  • ligands (2)
  • mass (1)
  • minor (3)
  • mismatch repair (2)
  • mrna (1)
  • native (4)
  • ncl (1)
  • netropsin (1)
  • nickel (1)
  • nucleic acid (2)
  • oligonucleotides (1)
  • organoids (1)
  • PARP1 (2)
  • patients (11)
  • plasma (2)
  • poisons (1)
  • polymers (4)
  • positron (1)
  • pro drug (1)
  • probe rna (1)
  • prostate (1)
  • pyrimidines (44)
  • reagent (3)
  • research (1)
  • ribothymidine (1)
  • rna (28)
  • rna sequences (2)
  • rna- processes (3)
  • skeleton (1)
  • snrna (1)
  • targets drugs (1)
  • Tdp1 (2)
  • tegafur (1)
  • test time (1)
  • Top1 (10)
  • toxic (4)
  • trifluorthymidine (3)
  • TRMT2A (7)
  • trna (8)
  • trna methyl (2)
  • tumor burden (1)
  • u4 snrna (1)
  • uracil (5)
  • urea (3)
  • western blot (1)
  • yeast (1)
  • Sizes of these terms reflect their relevance to your search.

    We review developments in fluorine chemistry contributing to the more precise use of fluorinated pyrimidines (FPs) to treat cancer. 5-Fluorouracil (5-FU) is the most widely used FP and is used to treat > 2 million cancer patients each year. We review methods for 5-FU synthesis, including the incorporation of radioactive and stable isotopes to study 5-FU metabolism and biodistribution. We also review methods for preparing RNA and DNA substituted with FPs for biophysical and mechanistic studies. New insights into how FPs perturb nucleic acid structure and dynamics has resulted from both computational and experimental studies, and we summarize recent results. Beyond the well-established role for inhibiting thymidylate synthase (TS) by the 5-FU metabolite 5-fluoro-2'-deoxyuridine-5'-O-monophosphate (FdUMP), recent studies have implicated new roles for RNA modifying enzymes that are inhibited by 5-FU substitution including tRNA methyltransferase 2 homolog A (TRMT2A) and pseudouridylate synthase in 5-FU cytotoxicity. Furthermore, enzymes not previously implicated in FP activity, including DNA topoisomerase 1 (Top1), were established as mediating FP anti-tumor activity. We review recent literature summarizing the mechanisms by which 5-FU inhibits RNA- and DNA-modifying enzymes and describe the use of polymeric FPs that may enable the more precise use of FPs for cancer treatment in the era of personalized medicine.

    Citation

    William H Gmeiner. Chemistry of Fluorinated Pyrimidines in the Era of Personalized Medicine. Molecules (Basel, Switzerland). 2020 Jul 29;25(15)

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 32751071

    View Full Text