Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

An intriguing challenge of drug discovery is targeting pathogenic mutant proteins that differ from their wild-type counterparts by only a single amino acid. In particular, pathogenic cysteine mutations afford promising opportunities for mutant-specific drug discovery, due to the unique reactivity of cysteine's sulfhydryl-containing side chain. Here we describe the first directed discovery effort targeting a pathogenic cysteine mutant of a protein tyrosine phosphatase (PTP), namely Y279C Src-homology-2-containing PTP 2 (SHP2), which has been causatively linked to the developmental disorder Noonan syndrome with multiple lentigines (NSML). Through a screen of commercially available compounds that contain cysteine-reactive functional groups, we have discovered a small-molecule inhibitor of Y279C SHP2 (compound 99; IC50 ≈ 6 μM) that has no appreciable effect on the phosphatase activity of wild-type SHP2 or that of other homologous PTPs (IC50 ≫ 100 μM). Compound 99 exerts its specific inhibitory effect through irreversible engagement of Y279C SHP2's pathogenic cysteine residue in a manner that is time-dependent, is substrate-independent, and persists in the context of a complex proteome. To the best of our knowledge, 99 is the first specific ligand of a disease-causing PTP mutant to be identified. This study therefore provides both a starting point for the development of NSML-directed therapeutic agents and a precedent for the identification of mutant-specific inhibitors of other pathogenic PTP mutants.


Jenny Y Kim, Bailey A Plaman, Anthony C Bishop. Targeting a Pathogenic Cysteine Mutation: Discovery of a Specific Inhibitor of Y279C SHP2. Biochemistry. 2020 Sep 22;59(37):3498-3507

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 32871078

View Full Text