Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

RNA splicing, a highly conserved process in eukaryotic gene expression, is seen as a promising target for anticancer agents. Splicing is associated with other RNA processing steps, such as transcription and nuclear export; however, our understanding of the interaction between splicing and other RNA regulatory mechanisms remains incomplete. Moreover, the impact of chemical splicing inhibition on long non-coding RNAs (lncRNAs) has been poorly understood. Here, we demonstrate that spliceostatin A (SSA), a chemical splicing modulator that binds to the SF3B subcomplex of the U2 small nuclear ribonucleoprotein particle (snRNP), limits U1 snRNP availability in splicing, resulting in premature cleavage and polyadenylation of MALAT1, a nuclear lncRNA, as well as protein-coding mRNAs. Therefore, truncated transcripts are exported into the cytoplasm and translated, resulting in aberrant protein products. Our work demonstrates that active recycling of the splicing machinery maintains homeostasis of RNA processing beyond intron excision. Copyright © 2021 Elsevier Ltd. All rights reserved.

Citation

Rei Yoshimoto, Jagat K Chhipi-Shrestha, Tilman Schneider-Poetsch, Masaaki Furuno, A Maxwell Burroughs, Shohei Noma, Harukazu Suzuki, Yoshihide Hayashizaki, Akila Mayeda, Shinichi Nakagawa, Daisuke Kaida, Shintaro Iwasaki, Minoru Yoshida. Spliceostatin A interaction with SF3B limits U1 snRNP availability and causes premature cleavage and polyadenylation. Cell chemical biology. 2021 Sep 16;28(9):1356-1365.e4

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33784500

View Full Text