Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Action potentials play an important role in neurotransmitter release in response to taste. Here, I have investigated voltage-gated Na+ channels, a primary component of action potentials, in respective cell types of mouse fungiform taste bud cells (TBCs) with in situ whole-cell clamping and single-cell RT-PCR techniques. The cell types of TBCs electrophysiologically examined were determined immunohistochemically using the type III inositol 1,4,5-triphoshate receptor as a type II cell marker and synaptosomal-associated protein 25 as a type III cell marker. I show that type II cells, type III cells, and TBCs not immunoreactive to these markers (likely type I cells) generate voltage-gated Na+ currents. The recovery following inactivation of these currents was well fitted with double exponential curves. The time constants in type III cells (~20 ms and ~ 1 s) were significantly slower than respective time constants in other cell types. RT-PCR analysis indicated the expression of Nav1.3, Nav1.5, Nav1.6, and β1 subunit mRNAs in TBCs. Pharmacological inhibition and single-cell RT-PCR studies demonstrated that type II and type III cells principally express tetrodotoxin (TTX)-sensitive Nav1.3 channels and that ~ 30% of type I cells express TTX-resistant Nav1.5 channels. The auxiliary β1 subunit that modulates gating kinetics was rarely detected in TBCs. As the β1 subunit co-expressed with an α subunit is known to accelerate the recovery from inactivation, it is likely that voltage-gated Na+ channels in TBCs may function without β subunits. Slow recovery from inactivation, especially in type III cells, may limit high-frequency firing in response to taste substances.

Citation

Yoshitaka Ohtubo. Slow recovery from the inactivation of voltage-gated sodium channel Nav1.3 in mouse taste receptor cells. Pflugers Archiv : European journal of physiology. 2021 Jun;473(6):953-968

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33881614

View Full Text