Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Tuberous sclerosis complex (TSC) is caused by mutations of either the TSC1 or TSC2 tumor suppressor gene. TSC causes tumors of the brain, heart, kidney, skin and lymphangioleiomyomatosis (LAM). Here we report that the TSC2 protein physically binds to high-density lipoprotein binding protein (HDLBP), also called vigilin, a core stress granule (SG) protein, and that TSC2 localizes to SGs. SGs contain mRNAs and translation initiation complexes, and regulate gene expression by sequestering specific transcripts, thereby serving a cytoprotective role. TSC2 has never before been shown to localize to SGs and knocking down vigilin impacts SG translocation of TSC2. TSC2-deficient cells showed a striking increase in the number of SGs after thermal shock and arsenite treatment relative to Tsc2-expressing cells. Our findings also show that murine kidney lysates from a model of TSC have increased levels of SG components including G3BP1 and Caprin1. G3BP1 and Caprin are elevated in renal angiomyolipomas (a renal tumor common in patients with TSC) compared with control normal kidney. G3BP1 is also elevated in TSC-associated subependymal giant cell astrocytomas. We found that genetic inhibition of G3BP1 inhibits the proliferation of TSC2-deficient cells in vitro. Finally, in a mouse model of TSC, genetic inhibition of SGs suppresses cell growth, suggesting that targeting SGs may have efficacy in the therapy of TSC. IMPLICATIONS: This study demonstrates that TSC2 physically interacts with HDLBP/vigilin, a component of SGs, that TSC2 localizes to SG and that TSC2-deficient cells have more SGs, suggesting that SGs represent a novel therapeutic target in TSC. ©2021 American Association for Cancer Research.

Citation

Kosmas Kosmas, Harilaos Filippakis, Damir Khabibullin, Michal Turkiewicz, Hilaire C Lam, Jane Yu, Nancy L Kedersha, Paul J Anderson, Elizabeth P Henske. TSC2 Interacts with HDLBP/Vigilin and Regulates Stress Granule Formation. Molecular cancer research : MCR. 2021 Aug;19(8):1389-1397

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33888601

View Full Text