Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Patulin (PAT) is a kind of mycotoxins that is universally found at rotten fruits, especially apples and apple products. Previous studies have shown that PAT has hepatotoxicity and nephrotoxicity. However, cardiotoxicity of PAT is rarely reported. Present study aimed at investigate the cardiotoxicity and relevant mechanisms of PAT on H9c2 cells. Cytotoxicity of PAT were evaluated by MTT assay and LDH. Hoechst 33258 staining was used to examine the nuclear morphology and AV/PI double staining was employed for apoptosis on H9c2 cells. Expression level of Caspase-3, Caspase-9, Bax, Bcl-2 were quantified to verify the potential mechanism of mitochondrial apoptosis pathway. The tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and interleukin 6 (IL-6) were quantified to determine the inflammatory response by using ELISA assay. ROS, SOD, MDA, GSH levels were measured to determine the oxidative stress status. Results demonstrated that PAT significantly induced cell injury, as evidenced by the down-regulated of cell viability, and the increase of LDH release. Hoesst33258 staining and flow cytometry showed that apoptosis rate was elevated by PAT. PAT treatment up-regulated the expression of Caspase-3, Caspase-9, Bax level and down-regulated the expression of Bcl-2 level. TNF-α, IL-1β, IL-6 levels showed that PAT increased the pro-inflammatory response. As PAT concentration increased, intracellular MDA, ROS content were elevated, while GSH content and the activity of SOD were significantly decreased. Thus, it is concluded that PAT may induce apoptosis of H9c2 cells through oxidative stress. Copyright © 2021 Elsevier Ltd. All rights reserved.

Citation

Baigang Zhang, Hairong Liang, Ke Huang, Jinliang Li, Dongmei Xu, Chenghui Huang, Yi Li. Cardiotoxicity of patulin was found in H9c2 cells. Toxicon : official journal of the International Society on Toxinology. 2022 Feb;207:21-30

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 34929212

View Full Text