Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Functional disorders of the glymphatic system and Aquaporin-4 (AQP-4) channels take part in the pathophysiology of neurodegenerative disease. The aim of this study was to describe the distribution of AQP-4 channels in the prefrontal cortex and hippocampus in a mouse model of NMDA receptor blocking agent-induced schizophrenia-like behavior model. NMDA receptor antagonist MK-801 was used to produce the experimental schizophrenia model. MK-801 injections were administered for eleven days to Balb/c mice intraperitoneally. Beginning from the sixth day of injection, the spatial learning and memory of the mice were tested by the Morris water maze (MWM) task. A group of mice was injected with MK-801 for ten days without the MWM task. Hippocampus and prefrontal specimens were collected from this group. Tissue samples were stained immunohistochemically and AQP-4 channels were examined by electron microscope. Time to find the platform was significantly longer at MK-801 injected group than the control group at the MWM task. Also, time spent at the target quadrant by the MK-801 group was shorter compared to the control group. AQP-4 expression increased significantly at MK-801 group glial cells, neuronal perikaryon, perineuronal and pericapillary spaces. In the MK-801 group, there was remarkable damage in neurons and glial cells. Increased AQP-4 channel expression and neurodegeneration at the MK-801 group induced with schizophrenia-like behavior model. MK-801 induced NMDA receptor blockade causes a decline in cognitive and memory functions. Increased AQP-4 expression at the prefrontal cortex and hippocampus to elicit and transport products of synaptic neurotransmitters and end metabolites is suggested.

Citation

Omer Burak Ericek, Kübra Akillioglu, Dilek Saker, Ibrahim Cevik, Meltem Donmez Kutlu, Samet Kara, Dervis Mansuri Yilmaz. Distribution of Aquaporin-4 channels in hippocampus and prefrontal cortex in mk-801-treated balb/c mice. Ultrastructural pathology. 2022 Jan 02;46(1):63-79

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35014582

View Full Text