Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Recently, MYBL2 is frequently found to be overexpressed and associated with poor patient outcome in breast cancer, colorectal cancer, bladder carcinoma, hepatocellular carcinoma, neuroblastoma and acute myeloid leukemia. In view of the fact that there is an association between MYBL2 expression and the clinicopathological features of human cancers, most studies reported so far are limited in their sample size, tissue type and discrete outcomes. Furthermore, we need to verify which additional cancer entities are also affected by MYBL2 deregulation and which patients could specifically benefit from using MYBL2 as a biomarker or therapeutic target. We characterized the up-regulated expression level of MYBL2 in a large variety of human cancer via TCGA and oncomine database. Subsequently, we verified the elevated MYBL2 expression effect on clinical outcome using various databases. Then, we investigate the potential pathway in which MYBL2 may participate in and find 4 TFs (transcript factors) that may regulate MYBL2 expression using bioinformatic methods. At last, we confirmed elevated MYBL2 expression can be useful as a biomarker and potential therapeutic target of poor patient prognosis in a large variety of human cancers. Additionally, we find E2F1, E2F2, E2F7 and ZNF659 could interact with MYBL2 promotor directly or indirectly, indicating the four TFs may be the upstream regulator of MYBL2. TP53 mutation or TP53 signaling altered may lead to elevated MYBL2 expression. Our findings indicate that elevated MYBL2 expression represents a prognostic biomarker for a large number of cancers. What's more, patients with both P53 mutation and elevated MTBL2 expression showed a worse survival in PRAD and BRCA.


Zekun Xin, Yang Li, Lingyin Meng, Lijun Dong, Jing Ren, Jianlong Men. Elevated expression of the MYB proto-oncogene like 2 (MYBL2)-encoding gene as a prognostic and predictive biomarker in human cancers. Mathematical biosciences and engineering : MBE. 2022 Jan;19(2):1825-1842

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 35135230

View Full Text