Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Fasciola hepatica is a trematode worm that causes fascioliasis, a neglected tropical disease in humans and livestock. To gain insight into the host-parasite interactions that facilitate infection, we have investigated the immunomodulatory properties of the parasite's tegumental coat (FhTeg), a major antigen source that is sloughed off and renewed every 2-3 h as the worm migrates through host tissue. Using mouse models of infection, we have previously shown that FhTeg induces a novel phenotype of dendritic cells that induce anergic CD4+ T-cells. We proposed that this induced state of hyporesponsiveness characterised by suppression of cell proliferation and cytokine secretion was one mechanism by which F. hepatica prevented host protective immunity to support the parasite survival. To determine if the same mechanisms are utilised during human infections, we have now examined the interaction of FhTeg with human PBMCs. FhTeg binds to and modulates cytokine production in human PBMCs, in particular targeting the CD4+ population resulting in reduced levels of TNF, IL-2 and IFNγ and increased markers of anergy. Furthermore, the adoptive transfer of FhTeg stimulated PBMCs to a humanised model of acute graft versus host disease (GvHD) attenuated disease progression by increasing survival and reducing pathological scores. These mice also displayed a significant decrease in the total number of human CD4+ cells expressing TNF, IL-2 and IFNγ in the spleen, liver and lung. This study therefore concurs with evidence from ruminant and murine models of infection suggesting that anergic CD4+ T cells are associated with successful Fasciola hepatica infection and highlights an important role for FhTeg in contributing to the overall immunosuppressive effects of this parasite. Copyright © 2022. Published by Elsevier Inc.

Citation

Marc Healy, Allison Aldridge, Arlene M A Glasgow, Bernard P Mahon, Karen English, Sandra M O'Neill. Helminth antigens modulate human PBMCs, attenuating disease progression in a humanised mouse model of graft versus host disease. Experimental parasitology. 2022 Apr;235:108231

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35151653

View Full Text