Correlation Engine 2.0
Clear Search sequence regions


The neural melanocortin receptors (MCRs), melanocortin-3 and -4 receptors (MC3R and MC4R), play essential non-redundant roles in the regulation of energy homeostasis. Interaction of neural MCRs and melanocortin-2 receptor accessory proteins (MRAPs, MRAP1 and MRAP2) is suggested to play pivotal roles in MC3R and MC4R signaling. In the present study, we identified two new human (h) MRAP2 splice variants, MRAP2b (465 bp open reading frame) and MRAP2c (381 bp open reading frame). Human MRAP2s are different in C-termini. We investigated the effects of five isoforms of MRAPs, hMRAP1a, hMRAP1b, hMRAP2a, hMRAP2b, and hMRAP2c, on MC3R and MC4R pharmacology. At the hMC3R, hMRAP1a and hMRAP2c increased and hMRAP1b decreased the cell surface expression. hMRAP1a increased affinity to ACTH. Four MRAPs (hMRAP1a, hMRAP1b, hMRAP2a, and hMRAP2c) decreased the maximal responses in response to α-MSH and ACTH. For hMC4R, hMRAP1a, hMRAP2a, and hMRAP2c increased the cell surface expression of hMC4R. Human MRAP1b significantly increased affinity to ACTH while MRAP2a decreased affinity to ACTH. Human MRAP1a increased ACTH potency. MRAPs also affected hMC4R basal activities, with hMRAP1s increasing and hMRAP2s decreasing the basal activities. In summary, the newly identified splicing variants, hMRAP2b and hMRAP2c, could regulate MC3R and MC4R pharmacology. The two MRAP1s and three MRAP2s had differential effects on MC3R and MC4R trafficking, binding, and signaling. These findings led to a better understanding of the regulation of neural MCRs by MRAP1s and MRAP2s.

Citation

Ren-Lei Ji, Ya-Xiong Tao. Regulation of Melanocortin-3 and -4 Receptors by Isoforms of Melanocortin-2 Receptor Accessory Protein 1 and 2. Biomolecules. 2022 Feb 02;12(2)

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35204745

View Full Text