Correlation Engine 2.0
Clear Search sequence regions


  • 25 an (2)
  • adp (7)
  • adults (16)
  • allele (6)
  • amp (1)
  • amp pnp (1)
  • and disease (5)
  • appears (3)
  • atp (5)
  • autism (1)
  • bacteria (2)
  • behavior (3)
  • bends (4)
  • brilliant blue (1)
  • c 100 (2)
  • cases (4)
  • CC1 (1)
  • CC2 (1)
  • CC3 (1)
  • cdnas (1)
  • cellular (1)
  • contains (2)
  • copies (1)
  • D 10 (2)
  • dendrite (14)
  • dimers (11)
  • does not move (1)
  • dynein (3)
  • electrophoresis (1)
  • Forkhead (1)
  • gene (5)
  • genomes (1)
  • genotypes (1)
  • haploid (1)
  • hot spot (1)
  • human (23)
  • hydrolysis (1)
  • in 23 (1)
  • inhibits (5)
  • intracellular transport (1)
  • itr 1 (1)
  • Kif1a (3)
  • KIF1A protein (2)
  • KIF5A (1)
  • kinesin (4)
  • kinesin 1 (1)
  • magenta (2)
  • mammals (1)
  • manner (2)
  • mIn1 (1)
  • molecular weight (3)
  • molt (1)
  • motor activity (4)
  • motor function (3)
  • motor neuron (1)
  • move (11)
  • movement water (1)
  • mutant proteins (1)
  • neck (2)
  • oligonucleotides (1)
  • organelles (2)
  • pathogenesis (1)
  • patients (8)
  • pcr (2)
  • phenotypes (15)
  • plasmids (1)
  • pm 100 (6)
  • protein c (1)
  • protein complexes (1)
  • protein D (1)
  • protein gene (1)
  • protein- domain (1)
  • RAB 3 (11)
  • RAB3A (1)
  • reaches (1)
  • reagents (1)
  • resin (3)
  • rna (1)
  • screen (1)
  • sds page (1)
  • signals (2)
  • sodium (1)
  • spastic paraplegia (2)
  • still (1)
  • strains (6)
  • strep tag (2)
  • subunit (2)
  • suggest (8)
  • talon (1)
  • transport axon (1)
  • transport system (1)
  • transport system (1)
  • transport vesicle (11)
  • trichloroethanol (1)
  • unc 104 (79)
  • young adult (1)
  • χ2 test (1)
  • Sizes of these terms reflect their relevance to your search.

    KIF1A is a kinesin superfamily motor protein that transports synaptic vesicle precursors in axons. Cargo binding stimulates the dimerization of KIF1A molecules to induce processive movement along microtubules. Mutations in human Kif1a lead to a group of neurodegenerative diseases called KIF1A-associated neuronal disorder (KAND). KAND mutations are mostly de novo and autosomal dominant; however, it is unknown if the function of wild-type KIF1A motors is inhibited by heterodimerization with mutated KIF1A. Here, we have established Caenorhabditis elegans models for KAND using CRISPR-Cas9 technology and analyzed the effects of human KIF1A mutation on axonal transport. In our C. elegans models, both heterozygotes and homozygotes exhibited reduced axonal transport. Suppressor screening using the disease model identified a mutation that recovers the motor activity of mutated human KIF1A. In addition, we developed in vitro assays to analyze the motility of heterodimeric motors composed of wild-type and mutant KIF1A. We find that mutant KIF1A significantly impaired the motility of heterodimeric motors. Our data provide insight into the molecular mechanism underlying the dominant nature of de novo KAND mutations.

    Citation

    Yuzu Anazawa, Tomoki Kita, Rei Iguchi, Kumiko Hayashi, Shinsuke Niwa. De novo mutations in KIF1A-associated neuronal disorder (KAND) dominant-negatively inhibit motor activity and axonal transport of synaptic vesicle precursors. Proceedings of the National Academy of Sciences of the United States of America. 2022 Aug 02;119(32):e2113795119

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 35917346

    View Full Text