Correlation Engine 2.0
Clear Search sequence regions


  • chagas disease (1)
  • feces (2)
  • human (3)
  • mass (4)
  • nifurtimox (14)
  • phase (1)
  • plasma (2)
  • rats (3)
  • stereoisomers (1)
  • subcellular fractions (1)
  • sulfur (1)
  • Sizes of these terms reflect their relevance to your search.

    The oral antiparasitic drug nifurtimox has been used to treat Chagas disease for more than 50 years. Historical studies determined that very little nifurtimox is excreted unchanged, but contemporaneous preclinical studies of radiolabeled nifurtimox found almost all of the radiolabel was rapidly excreted, suggesting that metabolism is extensive. Attempts to study nifurtimox metabolism have had limited success, yet this knowledge is fundamental to characterizing the pharmacokinetics and pharmacodynamics of the drug. We conducted in vitro studies using hepatic and renal sources with 14C-labeled nifurtimox as substrate and obtained samples of urine, plasma, and feces from rats administered 2.5 mg/kg [14C]-nifurtimox, and samples of human urine and plasma from phase 1 clinical studies in which participants received a single dose of 120 mg nifurtimox. Analysis of metabolites was done by high-performance liquid chromatography (HPLC)-high-resolution mass spectrometry (HRMS) and HRMS/MS with offline liquid scintillation counting of radiolabeled samples. Surprisingly, only traces of a few metabolites were identified from in vitro incubations with hepatocytes and subcellular fractions, but more than 30 metabolites were identified in rat urine, mostly with atypical mass changes. We developed an HRMS scouting method for the analysis of human samples based on the sulfur atom in nifurtimox and the natural abundance of 34S, as well as a characteristic tandem mass spectrometry (MS/MS) fragmentation of nifurtimox and metabolites. Fragmentation patterns on HRMS/MS were used to propose structures for 18 metabolites (22 including stereoisomers), and based on these structures, the six most abundant products were synthesized and the structures of the synthetic forms were confirmed by HRMS and two-dimensional nuclear magnetic resonance (2D NMR). Overall, we determined that the metabolism of nifurtimox is almost certainly not mediated by typical hepatic and renal drug-metabolizing enzymes, and instead is rapidly metabolized mainly by reduction or nucleophilic attack, with some evidence of oxidation. Knowledge of the most abundant metabolites of nifurtimox affords the possibility of future studies to investigate levels of exposure and possible drug-drug interactions.

    Citation

    Dieter Lang, Simone I Schulz, Isabel Piel, Dieudonné T Tshitenge, Heino Stass. Structural and Mechanistic Investigation of the Unusual Metabolism of Nifurtimox. Chemical research in toxicology. 2022 Nov 21;35(11):2037-2048

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 36209416

    View Full Text