Correlation Engine 2.0
Clear Search sequence regions

  • calnexin (1)
  • contacts (2)
  • ERO1 (1)
  • homeostasis (1)
  • NOX4 (1)
  • organelles (1)
  • oxygen (1)
  • reticulum (7)
  • rna (6)
  • species (1)
  • tunicamycin (1)
  • Sizes of these terms reflect their relevance to your search.

    Endoplasmic reticulum (ER) homeostasis requires molecular regulators that tailor mitochondrial bioenergetics to the needs of protein folding. For instance, calnexin maintains mitochondria metabolism and mitochondria-ER contacts (MERCs) through reactive oxygen species (ROS) from NADPH oxidase 4 (NOX4). However, induction of ER stress requires a quick molecular rewiring of mitochondria to adapt to new energy needs. This machinery is not characterized. We now show that the oxidoreductase ERO1⍺ covalently interacts with protein kinase RNA-like ER kinase (PERK) upon treatment with tunicamycin. The PERK-ERO1⍺ interaction requires the C-terminal active site of ERO1⍺ and cysteine 216 of PERK. Moreover, we show that the PERK-ERO1⍺ complex promotes oxidization of MERC proteins and controls mitochondrial dynamics. Using proteinaceous probes, we determined that these functions improve ER-mitochondria Ca2+ flux to maintain bioenergetics in both organelles, while limiting oxidative stress. Therefore, the PERK-ERO1⍺ complex is a key molecular machinery that allows quick metabolic adaptation to ER stress. Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.


    Arthur Bassot, Junsheng Chen, Kei Takahashi-Yamashiro, Megan C Yap, Christine Silvia Gibhardt, Giang N T Le, Saaya Hario, Yusuke Nasu, Jack Moore, Tomas Gutiérrez, Lucas Mina, Heather Mast, Audric Moses, Rakesh Bhat, Klaus Ballanyi, Hélène Lemieux, Roberto Sitia, Ester Zito, Ivan Bogeski, Robert E Campbell, Thomas Simmen. The endoplasmic reticulum kinase PERK interacts with the oxidoreductase ERO1 to metabolically adapt mitochondria. Cell reports. 2023 Jan 31;42(1):111899

    Expand section icon Mesh Tags

    Expand section icon Substances

    PMID: 36586409

    View Full Text