Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

This study investigated the antibacterial and antibiofilm mechanism of ultrasound (US) combined with citral nanoemulsion (CLNE) against Staphylococcus aureus and mature biofilm. Combined treatments resulted in greater reductions in bacterial numbers compared to ultrasound or CLNE treatments alone. Confocal laser scanning microscopy (CLSM), flow cytometry (FCM), protein nucleic acid leakage, and N-phenyl-l-naphthylamine (NPN) uptake analysis showed that the combined treatment disrupted cell membrane integrity and permeability. Reactive oxygen species (ROS) and malondialdehyde (MDA) assays indicated that US+CLNE exacerbated cellular oxidative stress and membrane lipid peroxidation. Field emission scanning electron microscopy (FESEM) revealed that the synergistic processing of ultrasound and CLNE resulted in cell rupture and collapse. In addition, US+CLNE showed a more pronounced removal effect than both alone in the biofilm on the stainless steel sheet. US+CLNE reduced biomass, the number of viable cells in the biofilm, cell viability and EPS polysaccharide contents. The results of CLSM also showed that US+CLNE disrupted the structure of the biofilm. This research elucidates the synergistic antibacterial and anti-biofilm mechanism of ultrasound combined citral nanoemulsion, which provides a safe and efficient sterilization method for the food industry. Copyright © 2023 Elsevier B.V. All rights reserved.

Citation

Hui Yang, Xiangjun Zhan, Luyi Song, Shuai Cheng, Ruiying Su, Yingying Zhang, Du Guo, Xin Lü, Xiaodong Xia, Chao Shi. Synergistic antibacterial and anti-biofilm mechanisms of ultrasound combined with citral nanoemulsion against Staphylococcus aureus 29213. International journal of food microbiology. 2023 Apr 16;391-393:110150

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 36870235

View Full Text