Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

The chemotherapeutic agent 5-fluorouracil (5-FU) is catabolized by dihydropyrimidine dehydrogenase (DPD), the deficiency of which may lead to severe toxicity or death. Since 2019, DPD deficiency testing, based on uracilemia, is mandatory in France and recommended in Europe before initiating fluoropyrimidine-based regimens. However, it has been recently shown that renal impairment may impact uracil concentration and thus DPD phenotyping. The impact of renal function on uracilemia and DPD phenotype was studied on 3039 samples obtained from three French centers. We also explored the influence of dialysis and measured glomerular filtration rate (mGFR) on both parameters. Finally, using patients as their own controls, we assessed as to what extent modifications in renal function impacted uracilemia and DPD phenotyping. We observed that uracilemia and DPD-deficient phenotypes increased concomitantly to the severity of renal impairment based on the estimated GFR, independently and more critically than hepatic function. This observation was confirmed with the mGFR. The risk of being classified 'DPD deficient' based on uracilemia was statistically higher in patients with renal impairment or dialyzed if uracilemia was measured before dialysis but not after. Indeed, the rate of DPD deficiency decreased from 86.4% before dialysis to 13.7% after. Moreover, for patients with transient renal impairment, the rate of DPD deficiency dropped dramatically from 83.3% to 16.7% when patients restored their renal function, especially in patients with an uracilemia close to 16 ng/ml. DPD deficiency testing using uracilemia could be misleading in patients with renal impairment. When possible, uracilemia should be reassessed in case of transient renal impairment. For patients under dialysis, testing of DPD deficiency should be carried out on samples taken after dialysis. Hence, 5-FU therapeutic drug monitoring would be particularly helpful to guide dose adjustments in patients with elevated uracil and renal impairment. Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.


B Royer, M Launay, J Ciccolini, L Derain, F Parant, F Thomas, J Guitton. Impact of renal impairment on dihydropyrimidine dehydrogenase (DPD) phenotyping. ESMO open. 2023 Jun;8(3):101577

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 37267808

View Full Text