Payel Dey, Soumyajit Biswas, Rima Das, Sandipan Chatterjee, Utpal Ghosh
Biochemical and biophysical research communications 2023 Aug 30The Poly (ADP-ribose) polymerase (PARP) inhibitor (PARPi) olaparib gives promising results against various types of cancers in clinical trials. The combination of drugs always increases therapeutic efficacy because of targeting multiple pathways of cancer progression. Our objective was to explore the potential synergistic anticancer activities of olaparib combined with p38 MAPK inhibitor (MAPKi) SB203580 on non-small cell lung carcinoma (NSCLC) A549 cells. The effects of the individual compound and their combination on cell survival, DNA damage as detected by γH2AX foci, expression of key proteins in Homologous Recombination (HR) and Non-Homologous End Joining (NHEJ) repair, caspase 3 activation, nuclear fragmentation and telomerase regulation were studied in A549 cells. The results showed that olaparib and SB203580 individually reduced cell viability in a dose-dependent manner but combined treatment synergistically reduced cell viability. Olaparib combined with SB203580 significantly reduced error-free HR repair via reducing MRE11-RAD50 and promoted error-prone NHEJ repair by increasing Ku70-Ku80 leading to increased DNA damage-induced apoptosis. Notably, the alteration of proteins in HR/NHEJ pathways, DNA damage and induction of apoptosis was significant by combined treatment but not by 1 μM olaparib treatment alone. In addition, combined treatment reduced telomerase activity more than single treatment via reducing telomerase subunits. These data implicated that the anticancer potential of olaparib was significantly increased by combining SB203580 through increasing DNA damage-induced apoptosis and inhibiting telomerase activity. Copyright © 2023 Elsevier Inc. All rights reserved.
Payel Dey, Soumyajit Biswas, Rima Das, Sandipan Chatterjee, Utpal Ghosh. p38 MAPK inhibitor SB203580 enhances anticancer activity of PARP inhibitor olaparib in a synergistic way on non-small cell lung carcinoma A549 cells. Biochemical and biophysical research communications. 2023 Aug 30;670:55-62
PMID: 37276791
View Full Text