Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Successful male reproduction depends on healthy testes. Autophagy has been confirmed to be active during many cellular events associated with the testes. It is not only crucial for testicular spermatogenesis but is also an essential regulatory mechanism for Sertoli cell (SCs) ectoplasmic specialization integrity and normal function of the blood-testis-barrier. Hypoxic stress induces oxidative damage, apoptosis, and autophagy, negatively affecting the male reproductive system. Cryptorchidism is a common condition associated with infertility. Recent studies have demonstrated that hypoxia-induced miRNAs and their transcription factors are highly expressed in the testicular tissue of infertile patients. Heme oxygenase 1 (HO1) is a heat-shock protein family member associated with cellular antioxidant defense and anti-apoptotic functions. The present study found that the HO1 mRNA and protein are up-regulated in yak cryptorchidism compared to normal testes. Next, we investigated the expression of HO1 in the SCs exposed to hypoxic stress and characterized the expression of key molecules involved in autophagy and apoptosis. The results showed that hypoxic stress induced the upregulation of autophagy of SCs. The down-regulation of HO1 using siRNA increases autophagy and decreases apoptosis, while the over-expression of HO1 attenuates autophagy and increases apoptosis. Furthermore, HO1 regulates autophagy and apoptosis via the PI3K/AKT/mTOR signaling pathway. These results will be helpful for further understanding the regulatory mechanisms of HO1 in yak cryptorchidism. Copyright © 2024 Elsevier Inc. All rights reserved.

Citation

Qiu Yan, Qi Wang, Jinghong Nan, Tingting Chen, Juntao Wang, Yong Zhang, Ligang Yuan. Heme oxygenase 1 (HO1) regulates autophagy and apoptosis via the PI3K/AKT/mTOR signaling pathway of yak Sertoli cells. Theriogenology. 2024 May;220:96-107

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 38503100

View Full Text