Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Salmonella typhimurium, a pathogenic bacterium with significant implications in medicine and the food industry, poses a substantial threat by causing foodborne illnesses such as typhoid fever. Accurate diagnosis of S. typhimurium is challenging due to its overlap symptoms with various diseases. This underscores the need for a precise and efficient diagnostic approach. In this study, we developed a biosensor using the Taguchi optimization method based on aptamer lateral flow assay (LFA) for the detection of S. typhimurium. Therefore, signal probe and nanobioprobe were designed using anti-Salmonella aptamer, conjugated with gold nanoparticles (GNPs), and used in LFA. The strategy of this test is based on a competitive format between the bacteria immobilized on the membrane and the bacteria present in the tested sample. Moreovere, the optimization of various factors affecting the aptamer LFA, including the concentration of bacteria (immobilized and into the sample) and the concentration of nanobioprop, were performed using the Taguchi test designing method. The data showed that the optimal conditions for the LFA reaction was 108 CFU/mL of immobilized bacteria and 1.5 μg/μL of nanobioprop concentration. Then, the visual detection limit of S. typhimurium was estimated as 105 CFU/mL. The reaction results were obtained within 20 min, and there were no significant cross-reactions with other food pathogens. In conclusion, the aptamer-LFA diagnostic method, optimized using the Taguchi approach, emerges as a reliable, straightforward, and accurate tool for the detection of S. typhimurium. Overall, this method can be a portable diagnostic kit for the detection and identification of bacteria. © 2024. The Author(s), under exclusive licence to Springer Nature B.V.

Citation

Nafise Abedi, Mehdi Zeinoddini, Mohammad Shoushtari. Optimized detection of Salmonella typhimurium using aptamer lateral flow assay. Biotechnology letters. 2024 Aug;46(4):583-592

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 38806936

View Full Text