Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Wood frogs are freeze-tolerant vertebrates that can endure weeks to months frozen during the winter without breathing and with as much as 65% of total body water frozen as extracellular ice. Underlying tolerances of anoxia and of cellular dehydration support whole body freezing. One pro-survival mechanism employed by these frogs is epigenetic modifications via DNA hypomethylation processes facilitating transcriptional repression or activation. These processes involve proteins such as DNA Methyltransferases (DNMTs), Methyl Binding Domain proteins (MBDs), Ten-Eleven Translocases (TETs), and Thymine Deglycosylase (TDG). The present study evaluates the responses of these proteins to dehydration and anoxia stresses in wood frog liver. DNMT relative protein expression was reduced in liver, but nuclear DNMT activity did not change significantly under anoxia stress. By contrast, liver DNMTs and nuclear DNMT activity were upregulated under dehydration stress. These stress-specific differences were speculated to arise from Post-Translational Modifications (PTMs). DNMT3A and DNMT3B showed increased relative protein expression during recovery from dehydration and anoxia. Further, MBD1 was elevated during both conditions suggesting transcriptional repression. TET proteins showed varying responses to anoxia likely due to the absence of oxygen, a main substrate required by TETs. Similarly, TDG, an enzyme that corrects DNA damage, was downregulated under anoxia potentially due to lower levels of reactive oxygen species that damage DNA, but levels returned to normal during reperfusion of oxygen. Our results indicate differential stress-specific responses that indicate the need for more research in the DNA hypomethylation mechanisms employed by the wood frog during stress. Copyright © 2023. Published by Elsevier Inc.

Citation

Panashe Kupakuwana, Gurjit Singh, Kenneth B Storey. DNA hypomethylation in wood frog liver under anoxia and dehydration stresses. Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology. 2024 Oct-Dec;274:111005

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 38969165

View Full Text