Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Infection with hepatitis C virus (HCV) is characterized by systemic oxidative stress that is caused by either viral core protein or chronic inflammation. It is well recognized that reactive oxygen species (ROS) such as H2O2 can induce apoptotic cell death and can therefore function as anti-tumorigenic species. However, the detailed mechanisms by which ROS induce apoptotic cell death and HCV copes with the oxidative conditions are largely unknown. In the present study, we found that H2O2 induced apoptotic cell death in p53-positive human hepatocytes, but not in p53-negative human hepatocytes. For this effect, H2O2 upregulated levels of p14, increased ubiquitin-dependent degradation of mouse double minute 2 (MDM2), and reduced the interaction between MDM2 and p53 to prevent p53 degradation, resulting in accumulation of p53 and subsequent activation of p53-dependent apoptotic pathways. Interestingly, HCV core repressed p14 expression via promoter hypermethylation to abolish the potential of H2O2 to activate the p14-MDM2-p53 pathway. As a consequence, HCV core-expressing cells could overcome p53-mediated apoptosis provoked by H2O2. Taken together, HCV core could contribute to hepatocellular carcinoma formation by removing deleterious roles of ROS inducing cell death. © 2015 The Authors.

Citation

Young Lan Seo, Shinhee Heo, Kyung Lib Jang. Hepatitis C virus core protein overcomes H2O2-induced apoptosis by downregulating p14 expression via DNA methylation. The Journal of general virology. 2015 Apr;96(Pt 4):822-32

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 25535325

View Full Text