Correlation Engine 2.0
Clear Search sequence regions


  • 4E BP (1)
  • AKT (1)
  • amino acid (1)
  • ATP (3)
  • cancer (3)
  • cell death (1)
  • cell growth (1)
  • cellular (2)
  • factors (2)
  • female (1)
  • heat (2)
  • homeostasis (1)
  • HSF1 (9)
  • hsf1 protein, human (1)
  • human cell (2)
  • humans (1)
  • leukemia (4)
  • mice (1)
  • p70S6K (1)
  • pathogenesis (1)
  • PI3K (1)
  • precursor t- cell (1)
  • prognosis (1)
  • protein human (1)
  • PTEN (1)
  • rapamycin (2)
  • shock (2)
  • signal (2)
  • t cell (5)
  • t- cell lymphoma (1)
  • target proteins (1)
  • tumor burden (1)
  • Sizes of these terms reflect their relevance to your search.

    Deregulated oncogenic signaling linked to PI3K/AKT and mTORC1 pathway activation is a hallmark of human T-cell acute leukemia (T-ALL) pathogenesis and contributes to leukemic cell resistance and adverse prognosis. Notably, although the multiagent chemotherapy of leukemia leads to a high rate of complete remission, options for salvage therapy for relapsed/refractory disease are limited due to the serious side effects of augmenting cytotoxic chemotherapy. We report that ablation of HSF1, a key transcriptional regulator of the chaperone response and cellular bioenergetics, from mouse T-ALL tumors driven by PTEN loss or human T-ALL cell lines, has significant therapeutic effects in reducing tumor burden and sensitizing malignant cell death. From a mechanistic perspective, the enhanced sensitivity of T-ALLs to HSF1 depletion resides in the reduced MAPK-ERK signaling and metabolic and ATP-producing capacity of malignant cells lacking HSF1 activity. Impaired mitochondrial ATP production and decreased intracellular amino acid content in HSF1-deficient T-ALL cells trigger an energy-saving adaptive response featured by attenuation of the mTORC1 activity, which is coregulated by ATP, and its downstream target proteins (p70S6K and 4E-BP). This leads to protein translation attenuation that diminishes oncogenic signals and malignant cell growth. Collectively, these metabolic alterations in the absence of HSF1 activity reveal cancer cell liabilities and have a profound negative impact on T-ALL progression. IMPLICATIONS: Targeting HSF1 and HSF1-dependent cancer-specific anabolic and protein homeostasis programs has a significant therapeutic potential for T-ALL and may prevent progression of relapsed/refractory disease. ©2019 American Association for Cancer Research.

    Citation

    Binnur Eroglu, Junfeng Pang, Xiongjie Jin, Caixia Xi, Demetrius Moskophidis, Nahid F Mivechi. HSF1-Mediated Control of Cellular Energy Metabolism and mTORC1 Activation Drive Acute T-Cell Lymphoblastic Leukemia Progression. Molecular cancer research : MCR. 2020 Mar;18(3):463-476

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 31744878

    View Full Text