Correlation Engine 2.0
Clear Search sequence regions


Phosphodiesterases (PDE) are key enzymes regulating intracellular cyclic nucleotide turnover and, thus, smooth muscle tension. Recent reports have indicated the presence of PDE isoenzymes 1, 2, 4, and 5 in cytosolic supernatants prepared from human ureteral smooth muscle homogenates and the ability of second-generation inhibitors of PDE 3, 4, and 5 to relax KCl-induced tension of human ureteral muscle in vitro. The aim of the present study was to evaluate the functional effects of recently developed, third-generation isoenzyme-selective PDE inhibitors, the nitric oxide (NO)-donating agents sodium nitroprusside (SNP) and dihydropyridine (DHP), which is also described as an antagonist of L-type calcium channels, and the adenylyl cyclase-stimulating drug forskolin on tissue tension and cyclic nucleotide levels of human ureteral smooth muscle segments in vitro. Relaxant responses of human ureteral smooth muscle were investigated in vitro using the organ bath technique. Cyclic nucleotides cAMP and cGMP were determined by specific radioimmunoassay following time and dose-dependent incubation of the ureteral tissue with the drugs. The most pronounced relaxing effects on KCl-induced tension of ureteral smooth muscle were exerted by nitrovasodilator SNP, PDE4 inhibitor rolipram, and PDE5 inhibitors E 4021 and morpholinosulfonyl-pyrazolopyrimidine (MSPP). Relaxing potency of the drugs was paralleled by their ability to elevate intracellular levels of cGMP and cAMP, respectively. Our data suggest the possibility of using selective inhibitors of PDE isoenzymes 4 and 5 in the treatment of ureteral stones and ureteral colic.

Citation

R Kühn, S Uckert, C G Stief, M C Truss, B Lietz, E Bischoff, M Schramm, U Jonas. Relaxation of human ureteral smooth muscle in vitro by modulation of cyclic nucleotide-dependent pathways. Urological research. 2000 Apr;28(2):110-5

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 10850633

View Full Text