Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Genetic studies in the past decade have improved our understanding of the molecular basis of the BCR-ABL1-negative myeloproliferative neoplasm (MPN) polycythaemia vera (PV). Such breakthroughs include the discovery of the JAK2V617F driver mutation in approximately 95% of patients with PV, as well as some very rare cases of familial hereditary MPN caused by inherited germline mutations. Patients with PV often progress to fibrosis or acute myeloid leukaemia, both associated with very poor clinical outcome. Moreover, thrombosis and major bleeding are the principal causes of morbidity and mortality. As a result of increasingly available and economical next-generation sequencing technologies, mutational studies have revealed the prognostic relevance of a few somatic mutations in terms of thrombotic risk and risk of transformation, helping to improve the risk stratification of patients with PV. Finally, knowledge of the molecular basis of PV has helped identify targets for directed therapy. The constitutive activation of the tyrosine kinase JAK2 is targeted by ruxolitinib, a JAK1/JAK2 tyrosine kinase inhibitor for PV patients who are resistant or intolerant to cytoreductive treatment with hydroxyurea. Other molecular mechanisms have also been revealed, and numerous agents are in various stages of development. Here, we will provide an update of the recent published literature on how molecular testing can improve the diagnosis and prognosis of patients with PV and present recent advances that may have prognostic value in the near future.

Citation

Ruth Stuckey, María Teresa Gómez-Casares. Recent Advances in the Use of Molecular Analyses to Inform the Diagnosis and Prognosis of Patients with Polycythaemia Vera. International journal of molecular sciences. 2021 May 10;22(9)

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 34068690

View Full Text